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ABSTRACT

Borgman and Frahme used principal component analysis to reduce consideration of eleven
characteristics of Bentonite to only five using data from deposits in Northeastern Wyoming, U.S.A.
In this paper, the authors show that co-kriging is quite feasible for eleven variables and give

numerical comparisons with those using the principal component formulation.

RESUME

UNE ETUDE SUR DES DONNEES DE BENTONITE

Borgman et Frahme ont utilisé 1l'analyse en composantes principales pour réduire de onze &
cinqg le nombre de caractéristiques & considérer pour des données provenant de gisements de bentonite
du Nord-Est Wyoming (U.S.A.). Dans cet article, les auteurs montrent que le co-krigeage est parfai-

tement faisable avec onze variables et ils é&tablissent une comparaison numérique avec l'analyse en

composantes principales de Borgman et Frahme.
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A - INTRODUCTION

Bentonite is a clay occurring in layered deposits in Northeastern Wyoming and also in the
Black Hills District or South Dakota, U.S.A. It is used for a number of purposes such as binder
in foundry sand, pelletizing of taconite and as a constituent of drilling mud for oil wells.
Unlike metallic deposits, for Bentonite the economic value of a mining unit or of the deposit is
not determined by an ore grade. There are a number of characteristics that are reflected in this
value. One approach then is to form a value function which is a linear combination of a number
of attributes. In order to evaluate a deposit it is necessary to utilize sample data and
estimate “"values"” for mining units. Kriging is the tool frequently used for such an estimation
of ore grades. When a value function is formed by a linear combination and the data is likewise
transformed to such values it is known that Kriging the linear combination is not an optimal
method. It has the further drawback that if the weights in the value function are changed then
the entire estimation process must be repeated including modelling the variogram. Co-Kriging is
a multivariate estimation method which avoids both of these drawbacks but which has not received
as much attention or application until recently. At least two intermediate approaches have been
used. G. Matheron (1979) obtained results for improving the Kriging of linear combinations.
Borgman and Frahme (1976) used principal components analysis to reduce to a smaller number of
uncorrelated variables, each could then be Kriged separately. The comparisons between these two
approaches and the feasibility of co-Kriging is the subject of this paper.

B - THE DATA

Knechtel and Patterson (1956) reported measurements on 29 characteristics at 81 locations.
Borgman and Frahme considered the data for only eleven variables and only for samples from the
Clay Spur beds. The data set is tabulated on the back of map M—-36. The locations are given by
map number and for the 78 Clay Spur samples, there are only 45 distinct locations. Sample
location coordinates in miles were read from the map using 45° N. Lat., 104°20' W. Long. as the
origin. Where there were samples with the same map number, the average of the values was
utilized for further analysis. The eleven variables included were the same as those in Borgman
and Frahme, and are listed below. |

NC Percent nonclay material.

GR Percent grit (by weight) retained on a 200 mesh screen.

GC Green compression strength in psi for 2% tempering water using sand

bonded with 4% clay.
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DC Dry compression strength in psi for 2% tempering water using sand
bonded with 4% clay.

SW Swelling capacity of 2 grams of bentonite in milliliters.

YC Yield in barrels of 15 centipoise slurry that can be made from one
ton of bentonite.

PH pH

SL Viscosity in centipoises for a slurry containing 6% clay by weight.

FL Thickness of filtrate after 30 minutes for a suspension containing 67
clay by weight.

IC 1Initial gel strength in grams for a slurry containing 6% clay by
weight.

TC Gel strength in grams after 10 minutes for the slurry used in (10)

above. C - MULTIVARIATE METHODS

The Bentonite data constitutes a 45 x 11 array. This may be interpreted as 45 points in 11
dimensional space on 1l points in 45 dimensional space. In either case it is desirable to ask
whether the cloud of points (or vectors) can be described in a lower dimensional space.
Principal components analysis (PCA) is one method for achieving this. By using a Euclidean
distance and after normalization, a set of eigenvalues and eigenvectors is extracted from the
correlation matrix. The eigenvectors (principal components) are orthogonal (uncorrelated) and
represent the directions of the cloud of points. The eigenvalues represent the moments of
inertia in the respective directions. This approach was followed by Borgman and Frahme. Each
original point is represented as a linear combination of the new components. For the Bentonite
data using PCA, five factors explain 88% of the variance. Variograms and cross-variograms were
then computed for the coefficients but no co-Kriging results were given by Borgman and Frahme.

Let Dij be the data for the i-th characteristic in the j-th sample. Set

_ R
D, =5= I D, 1)
i 45 j=1 ij
- 2
2 1 (2)
S; =750 I (Di.—Di)
I A R
R : )
5 0 « o e e sll
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Then the normed data matrix is

and the correlation matrix is

-1 =T
Z =S (D - Dl )
1 T
R = Z; YA

It is the eigenvectors and eigenvalues of R

percent of variance explained.

R-mode principal component factor analyses for the bentonite data yielded the first five

eigenvalues as (4.84, 1.78, 1.60, 0.82, 0.64).

(4)

(5)

that are the principal components and indicate the

Thus the first five eigenvectors “explain" 88% of

the data variance. The corresponding five vectors E&’ EQ, ceey §5 and eleven scalars, o, are
given in Table 1 below.
1 % E E Ey E, Es
1 4.14 .179 .250 .493 -,105 -.285
2 1.59 144 .291 .395 ~.536 .584
3 0.72 ~.141 -.555 -.120 .019 .510
4 10.80 .021 .501 -.020 727 .400
5 7.91 -.400 -.106 .048 .065 142
6 19.66 -.429 012 .083 -.098 0l4
7 0.84 -.216 .324 -.460 -,252 -.263
8 15.89 -.429 076 .145 -.022 -.030
9 5.49 .188 -.411 428 244 -.224
10 23.55 -.390 041 313 .133 -.120
11 48.44 -.407 042 251 .111 -.047
Table 1. The first five eigenvectors for the bentonite data and the standard deviations, o, .
Another method for reducing the number of variables has been developed by Benzecri
(1973). Correspondence analysis proceeds by normalizing the data set in a different manner. If

all entries in the data array are added and then each entry divided by this sum, the resulting

entries could be interpreted as probabilities.

contingency table.

matrix

S

is formed where

That is, the original array is analagous to a
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n
k
L=z = (6)
Jk i=1 Di.D.J
m
where D, = L D,, (7)
ie R ¥
j=1
n
D .= I D (8)

It is the eigenvalues and eigenvectors of this matrix that are used in the representation in
lower dimensional space. One of the advantages of Correspondence Analysis (CA) is that the
normalization is symmetric and the eigenvalues, eigenvectors can be extracted simultaneously
whether rows or columns are viewed as points. When CA was applied to the Bentonite data 3
factors explained 88% of the variance. The coordinates of those factors in terms of the original
variates is given in Table 2.

J Factors (Variables Coordinates)

NC .268532 .082745 .010257 076746 -.038046
GR .322280 144658 .151971 .093242 —-.074404
GC .169334 .365915 915241 .010818 -.077004
DC .246331 .120275 -.028997 .019158 .072338
SW .073490 -.088080 .271276 -.062697 -.002881
YT .070724 .159783 -.079847 -.070381 -.002881
PH .509701 -1.142226 -.381855 -.043551 .009954
SL -.350470 .006292 -.027142 -.204010 -.034154
FL .336272 .119427 -.063144 .228225 -.119753
IC  -.488440 -.048314 -.148560 .016706 -.202629
TC ~.500948 -.105691 .012118 .090878 .091321
Table 2

WEIGHT AC(1) RC(1) AC(2) RC(2) AC(3) RC(3)
NC .046454 3.53 83.46 .52 7.92 .01 .12
GR .006765 74 64.07 .23 12.91 W42 14.25
GC .024937 .75 2.85 5.46 13.31 56.11 83.24
DC .188327 12,04 74.37 4.45 17.73 .43 1.03
SW .103691 .59 5.95 1.31 8.54 20.50 81.03
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YT .263388 1.39 11.95 10.99 60.98 4.51 15.23

PH .034020 9.31 15.17 72.54 76 .20 13.32 8.52

SL .050693 6.56 73.82 .00 .02 .10 A4

FL .058784 7.00 57.18 1.37 7.21 .63 2.02

I¢ .065900 16.56 78.40 .25 .77 3.91 7.25

TC .157041 41.52 89.99 2.87 4.01 .06 .05
Table 3

Table 3 provides diagnostic information. Note that the AC column adds to 100(percent) for
each factor. Likewise the row sums for RC would add to 100 if all factors were listed. Factor 1
is primarily determined by TC and this factor is the dominant component of all except GC, SW, YT,
PH. Factor 2 is principally PH and is the dominant component of PH, YT. Factor 3 is principally
GC and is the dominant component of GC, SW. The computer program used was adapted for use on the
CDC 6400 from that given by David, Dagbert, Beauchemin (1977). The output also provides the
factors for samples and plots the variables, samples on 2 factor coordinate systems. Valenchon
(1982) has also described the application of CA to geochemical data. Zhou, Chang and Davis
(1983) have described the appropriate applications for RQ mode PCA vs CA.

Note that neither PCA nor CA is an estimation method but rather are tools to reduce the

number of variables. D - CO-KRIGING

When the variables of interest are not only spatially correlated but also inter-correlated
then joint estimation provides better estimation than separate estimation. This is known as co-
Kriging and is a minimum variance linear estimation. It has not been widely used in mining
applications except in the under sampled form and only with a limited choice of cross-—
variograms. The general formulation of co—-Kriging described here is that given in Myers (1982),
(1983), (1984). The numerical results were obtained using the computer program given in Carr,
Myers and Glass (1984). The objective was to show that co-Kriging is feasible even for 11
variables and to compare the results with those obtained using co-Kriging on Borgman and Frahme's
reduced variable model.

Let Zl(x), oo Zm(x) denote the m variables at location x or simply

Z(x) = [Z (X)), «ve , Z (X)] 9)

1 m
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The data is n row matrices E(xl), cee E(xn). For an unsampled

location Xq, the co-Kriging estimator is given by

Z(xi)I‘i (10)

Z(x.) =
0 1

LI e W=

i

where each Fi is an m x m matrix of weights. The co—Kriging equations may be written as

[ e =]

. Y (xi—xj)l‘j + =y (Xo_’f,i) (11)

Y is the variogram matrix, p 1is the Lagrange multipler matrix and I an identity matrix. The

Kriging variance is
Tr(Z v (xo - xi) r, + ul (12)

where Tr denotes the trace. Myers (1983) describes the relationship of co-Kriging linear
combinations to Kriging linear combinations. Davis and Greenes (1983) have given another example
of the use of PCA to reduce the number of variables and effectively avoid co—Kriging. However
such an approach is not really necessary as is shown by the results in this paper. Moreover, it
is not possible to obtain a variance of the error of estimation of the original variables when
PCA or CA is combined with Kriging or co-Kriging. For this reason it is preferable to use co-

Kriging especially when estimating linear combinations.

E - VARIOGRAMS AND CROSS-VARIOGRAMS

In order to utilize Co-Kriging for the Bentonite data it is necessary to model variograms
for 11 variables and cross—variograms for 55 pairs of variables. For variograms, standard valid
models such as spherical, power, exponential or gaussian can be considered. For cross-variograms
however the possible models are not so easily identified and plotting sample cross variograms is
not an adequate guide for determining the models.

The method used is that described in Myers (1983), namely for each pair of variables form a

new variable by the sum. Model the variogram for this new variable and form




30, + () =y () = v, ()] a3

+
this is the cross—variogram. since Yip » Yy » Yy are modelled separately it is necessary to

check the Cauchy-Schwartz Inequality
1&
Ile(h)‘ < [y (h) y,(0)] (14)

The variograms can be validated by cross—validation in the usual way. Finally the cross-—
variograms and variograms can be cross—validated collectively by Co-Kriging.

Table 4 gives the variogram values for the eleven variables (BF denotes Borgman and Frahme
and identifies the results given in that paper. MC refers to Myers and Carr).

Table 5 lists the variogram models actually used and Table 6 the cross-variogram models
used. Table 7 tabulates the cross validation results for the eleven variograms as given by the

three Kriging procedurs as well as for Co-Kriging.

Table 4

Comparison of Variogram Values

h (miles)
Variable 0 2 4 Variance

1 BF data 13.9 12.2 26.9

BF app 13.2 11.6 13.9

MC data 2.50 4.67 6.95 6.32
2 BF data 2.51 2.89 3.07

BF app 2.56 2.45 2.39

MC data 1.70 1.68 2.03 1.70
3 BF data 0.73 0.42 0.51

BF app 0.48 0.42 0.42

MC data 0.28 0.29 0.27 0.28
4 BF data 184.0 82.0 100.0

BF app 130.0 110.0 100.0

MC data 37.30 37.40 43.50 47,30
5 BF data 65.00 54,0 52.0

BF app 51.0 38.0 41.0

MC data 39.90 39.70 41.30 39.90
6 BF data 309.0 304.0 352.0

BF app 349.0 258.0 280.0

MC data 200.0 228.0 249.0 251.,0
7 BF data 0.57 0.68 0.52

BF app 0.62 0.53 0.61
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MC data 0.40 0.41 0.39 0.53

8 BF data 272.0 149.,0 159.0

BF app 235.0 175.0 192.0

MC data 90.0 93.30 113.0 122.0
9 BF data 32.9 24,10 26.50

BF app 27.2 22,50 25.50

MC data 16.0 16.70 17.10 26.30
10 BF data 629.0 387.0 358.0

BF app 508.0 393.0 4440

MC data 307.0 293.0 286.0 307.0
11 BF data 2203.0 2164.0 1709.0

BF app 2140.0 1620.0 1810.0

MC data 1800.0 2080.0 1720.0 1800.0

Table 5

Single Variable Relationships

Variable Nugget Sill Range (miles) Structure
1 2.50 65.32 4,0 Spherical
2 1.70 1.70 10.0 Random
3 0.28 0.28 10.0 Random
4 37.30 47.30 6.0 Spherical
5 39.90 39.90 10.0 Random
6 200.00 251.00 4,0 Spherical
7 0.40 0.53 12.0 Linear
8 90.00 122,00 6.0 Spherical
9 160.00 263.00 6.0 Gaussian
10 307.00 307.00 10.0 Random
11 1800.00 1800.00 10.0 Random
Table 6
Cross Variogram Parameters
Pair Nugget Sill Range Model
1-2 0.000 0.500 4,000 1
1-3 0.000 0.100 4.000 1
1-4 0.000 0.400 4,000 1
1-5 0.100 0.100 100.000 3
z 1-6 - 0.100 0.100 100.000 3
3 1-7 0.000 0.100 4,000 1
B 1-8 0.000 0.400 4.000 1
: 1-9 0.000 0.400 4.000 1
1-10 0.100 0.100 100.000 3
1-11 0.100 0.100 100.000 3
2-3 0.100 0.100 100.000 3
2-4 0.000 0.400 4,000 1
2-5 0.100 0.100 100.000 3
2-6 0.000 0.100 4.000 1
2-7 0.100 0.100 100.000 3
2-8 0.000 0.400 4,000 1
2-9 0.000 0.400 4,000 1
2-10 0.100 0.100 100.000 3
2-11 0.100 0.100 100.000 3
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Model:

Mean Square Error Estimation Results
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1 = Spherical

3 = Linear

Table 7

(42 sample locations)

Myers/Carr

6.33
1.76
0.32
48.85
45.65
283.95
0.55
124.02
27.03
326.92
2098.17

KRIGING
Borgman Data

6.79
1.92
0.32
48,72
45.92
283.81
0.60
124.08
27.231
326.92
2098.17
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6.79
1.73
0.32
48.79
47.97
291.85
0.56
124,10
26.69
327.23
2127.50



F - COMPUTATIONAL EXPENSES

In addition to complexity and the need to model many cross-variograms it is usually assumed
that the computer time required to solve large Co~Kriging systems will be excessive. To estimate
11 variables for 45 locationsrequired 30 minutes of CPU time on an IBM 4341, Separate Kriging
of eleven variables required 5 minutes on the same system.
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